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1. INTRODUCTION AND RATIONALE

A complete spectral unmixing of a complicated AVIRIS scene may not always

be possible or even desired. High quality data of spectrally complex areas are very high

dimensional and are consequently difficult to fully unravel. Partial unmixing provides a
method of solving only that fraction of the data inversion problem that directly relates to

the specific goals of the investigation. Many applications of imaging spectrometry can

be cast in the form of the following question: "Are my target signatures present in the

scene, and if so, how much of each target material is present in each pixel?" This is a

partial unmixing problem. The number of unmixing endmembers is one greater than
the number of spectrally defined target materials. The one additional endmember can

be thought of as the composite of all the other scene materials, or "everything else".

Several workers have proposed partial unmixing schemes for imaging

spectrometry data, but each has significant limitations for operational application. The

low probability detection methods described by Farrand and Harsanyi (1993) and the

foreground-background method of Smith et al. (1994) are both examples of such partial

unmixing strategies. The new method presented here builds on these innovative
analysis concepts, combining their different positive attributes while attempting to

circumvent their limitations. This new method partially unmixes AVIRIS data, mapping

apparent target abundances, in the presence of an arbitrary and unknown spectrally

mixed background. It permits the target materials to be present in abundances that

drive significant portions of the scene covariance. Furthermore it does not require a

priori knowledge of the background material spectral signatures. Figure 1 illustrates

the concept for a scene with five background materials and two targets of interest. The

challenge is to find the proper projection of the data that hides the background
variance while simultaneously maximizing the variance amongst the targets.

2. METHOD OUTLINE

The data processing can be broken into three steps: reduction to apparent

surface reflectance; pixel purity determination; and partial unmixing. The AVIRIS data

are first reduced to apparent surface reflectance by a radiative transfer model

approach (Gao et al., 1993; Green et al., 1993). This data reduction uses little, or no,

ground data and removes the atmospheric, solar and instrument effects.

Next the data are subjected to a dimensionality analysis and noise whitening

process, using the Minimum Noise Fraction (MNF) transform process (Green et al.,

1988; Lee et al., 1990). Through a series of affine transforms, the data are translated to

have zero mean and then rotated and scaled so that the noise in every band is

uncorrelated and has unit variance.

Then the data are repeatedly projected onto random unit vectors. The

extreme pixels in each projection are noted. A cumulative account records the number
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of times each pixel is found to be extreme. This extremity-score can be shown to be

related to pixel purity, via a convex geometry argument (Boardman, 1993). The purest

pixels in the scene are rapidly identified.

The purest pixels in the scene are then compared against the target spectra. If

any are close matches for the target materials they are identified and separated from

the other purest pixels. This allows the method to work on major scene components. It

is not limited to low-probability targets. All high-purity pixels that do not closely match

a target spectrum are used to determine a subspace that spans the background. This

obviates the need to know the specific background endmember spectra. We only

require their spanning subspace, a much less restrictive requirement. Optimal

projection vectors are directly calculated for the target-spanning subspace,

perpendicular to the background-spanning subspace.

Automatic unmixing (Boardman, 1993) is applied to the data, after projection

onto the optimal target subspace. Here the number of endmembers is one more than

the number of targets, irrespective of the complexity of the background. Finally, the

target apparent abundances are spatially mapped.

3. AVIRIS EXAMPLES

We present three applications of the method: carbonate mapping at the North

Grapevine Mountains (NGM), CA/NV; rare-earth mineral mapping at Mountain Pass,

CA; and kaolinite mapping near Golden, CO. The carbonate example is shown here for
illustration purposes. The NGM scene is fairly complicated and has a variety of surface

mineralogies. Figure 2 shows the MNF-eigenvalues, indicating at least six-dimensional

data. The targets of interest were calcite and dolomite, two carbonate minerals. The

partial unmixing process was applied, and the results are shown in the following figures.

Figure 3 shows the optimal projection of the data. The background composite
endmember is centered at (0,0). The vertical axis corresponds to the separation

between the targets and the background, the horizontal axis maps intertarget

separation. The units are noise standard deviations. Figure 4 shows the MNF model of

a target-free scene. The scatter in the null model corresponds to the noise in the data.

The agreement between the observed data and the null hypothesis model indicates the
successful derivation of the optimal projection. The targets are optimally separated,

and the multi-component background is fully compressed.

Figures 5 and 6 show portions of the calcite dolomite abundance maps. For

display, the apparent abundances are scaled from 0.10 to 0.50 and displayed in a gray

scale from white to black respectively. The outcrop pattern of the two minerals and

surface mixing is clearly defined. Figures 7 and 8 show the mean spectra of the 50

highest abundance pixels for each target. They are good matches to reference spectra
of calcite and dolomite.

4. CONCLUSIONS

We present a method for mapping target surface materials, based on their

spectral signatures, in the presence of complicated and unknown backgrounds. The

targets can be major scene components. The spectra of the background materials are

not required. The complexity of the unmixing is driven by the number of targets, not by
the number of total materials in the scene and background. This uncouples the

processing complexity from the scene complexity. The method is rapid, automatic and

repeatable.
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Figure 1. Schematic diagram of partial unmixing as a data projection.
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Figure 2. MNF signal eigenvalues of NGM data,
showing at least 6 valid dimensions.
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Figures 3 and 4. Optimally projected data and MNF-noise-model null hypothesis.
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Figures 5 and 6. Apparent abundance of dolomite and calcite target materials.
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Figures 7. and 8. Mean spectra of 50 purest dolomite and calcite pixels.
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